3.377 \(\int \frac{1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=174 \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(2*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(a^(3/2)*d)
- (5*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*S
qrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.396089, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {4222, 2765, 2982, 2782, 205, 2774, 216} \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(2*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(a^(3/2)*d)
- (5*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*S
qrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{a}{2}-2 a \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{a^2}-\frac{\left (5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (5 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}\\ &=\frac{2 \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{a^{3/2} d}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.52325, size = 316, normalized size = 1.82 \[ \frac{\cos ^3\left (\frac{c}{2}+\frac{d x}{2}\right ) \sqrt{\sec (c+d x)} \left (-\frac{2 \sin \left (\frac{c}{2}\right ) \cos \left (\frac{d x}{2}\right )}{d}-\frac{2 \cos \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )}{d}+\frac{\sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right )}{d}+\frac{\tan \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}+\frac{d x}{2}\right )}{d}\right )}{(a (\cos (c+d x)+1))^{3/2}}-\frac{i \sqrt{2} e^{-\frac{1}{2} i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \cos ^3\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (2 \sinh ^{-1}\left (e^{i (c+d x)}\right )+\frac{5 \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )}{\sqrt{2}}-2 \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )}{d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]

[Out]

((-I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(2*ArcSinh[E^(I*(c
 + d*x))] + (5*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])/Sqrt[2] - 2*ArcTanh[Sqr
t[1 + E^((2*I)*(c + d*x))]])*Cos[c/2 + (d*x)/2]^3)/(d*E^((I/2)*(c + d*x))*(a*(1 + Cos[c + d*x]))^(3/2)) + (Cos
[c/2 + (d*x)/2]^3*Sqrt[Sec[c + d*x]]*((-2*Cos[(d*x)/2]*Sin[c/2])/d - (2*Cos[c/2]*Sin[(d*x)/2])/d + (Sec[c/2]*S
ec[c/2 + (d*x)/2]^2*Sin[(d*x)/2])/d + (Sec[c/2 + (d*x)/2]*Tan[c/2])/d))/(a*(1 + Cos[c + d*x]))^(3/2)

________________________________________________________________________________________

Maple [A]  time = 0.393, size = 203, normalized size = 1.2 \begin{align*} -{\frac{\sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{3}\cos \left ( dx+c \right ) }{4\,{a}^{2}d \left ( \sin \left ( dx+c \right ) \right ) ^{7}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 4\,\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +\sqrt{2}\cos \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+5\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{-{\frac{3}{2}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^(3/2)/sec(d*x+c)^(3/2),x)

[Out]

-1/4/d*2^(1/2)/a^2*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^3*cos(d*x+c)*(4*arctan(sin(d*x+c)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)/cos(d*x+c))*2^(1/2)*sin(d*x+c)+2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+5*arcsin
((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(1/cos(d*x+c))^(3/2)/(cos(d
*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.65621, size = 521, normalized size = 2.99 \begin{align*} \frac{5 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 8 \,{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/4*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(
d*x + c))/(sqrt(a)*sin(d*x + c))) - 8*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(a*cos(d*x + c)
 + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)